Abstract

AbstractEfficient catalyst design is important for lean‐electrolyte sulfur reduction in Li−S batteries. However, most of the reported catalysts were focused on catalyst‐polysulfide interactions, and generally exhibit high activity only with a large excess of electrolyte. Herein, we proposed a general rule to boost lean‐electrolyte sulfur reduction by controlling the catalyst‐solvent interactions. As evidenced by synchrotron‐based analysis, in situ spectroscopy and theoretical computations, strong catalyst‐solvent interaction greatly enhances the lean‐electrolyte catalytic activity and battery stability. Benefitting from the strong interaction between solvent and cobalt catalyst, the Li−S battery achieves stable cycling with only 0.22 % capacity decay per cycle with a low electrolyte/sulfur mass ratio of 4.2. The lean‐electrolyte battery delivers 79 % capacity retention compared with the battery with flooded electrolyte, which is the highest among the reported lean‐electrolyte Li−S batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.