Abstract

Recently Mycobacterium tuberculosis was shown to possess a novel protein modification, in which a small protein Pup is conjugated to the epsilon-amino groups of lysines in target proteins. Analogous to ubiquitin modification in eukaryotes, this remarkable modification recruits proteins for degradation via archaeal-type proteasomes found in mycobacteria and allied actinobacteria. While a mycobacterial protein named PafA was found to be required for this conjugation reaction, its biochemical mechanism has not been elucidated. Using sensitive sequence profile comparison methods we establish that the PafA family proteins are related to the γ-glutamyl-cysteine synthetase and glutamine synthetase. Hence, we predict that PafA is the Pup ligase, which catalyzes the ATP-dependent ligation of the terminal γ-carboxylate of glutamate to lysines, similar to the above enzymes. We further discovered that an ortholog of the eukaryotic PAC2 (e.g. cg2106) is often present in the vicinity of the actinobacterial Pup-proteasome gene neighborhoods and is likely to represent the ancestral proteasomal chaperone. Pup-conjugation is sporadically present outside the actinobacteria in certain lineages, such as verrucomicrobia, nitrospirae, deltaproteobacteria and planctomycetes, and in the latter two lineages it might modify membrane proteins.ReviewersThis article was reviewed by M. Madan Babu and Andrei Osterman

Highlights

  • It was recently shown that Mycobacterium tuberculosis contains a small protein, Pup (Rv2111c), that is covalently conjugated to the ε-NH2 groups of lysines on several target proteins such as the malonyl CoA acyl carrier protein (FabD) [1]

  • This remarkable conjugation reaction was found to be dependent upon another mycobacterial protein, the proteasome accessory factor (PafA) [1,3]

  • Unlike ubiquitin and related ubiquitin-like proteins (UBLs), which are conjugated to target lysines by means of successive trans-thiolation reactions involving their C-terminal glycine residue, Pup was shown to be conjugated via the γ-carboxylate of the terminal glutamate [1,2,3]

Read more

Summary

Introduction

It was recently shown that Mycobacterium tuberculosis contains a small protein, Pup (Rv2111c), that is covalently conjugated to the ε-NH2 groups of lysines on several target proteins (pupylation) such as the malonyl CoA acyl carrier protein (FabD) [1]. Using sensitive sequence analysis methods we show that PafA, the protein required for pupylation, belongs to the glutamine synthetase fold and predict that it is likely to catalyze an ATP-dependent peptide ligase reaction. The Pup proteins were all between 50–90 residues in length and a multiple alignment shows that they all contain a conserved motif with a G [EQ] signature at the C-terminus [Additional file 1].

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.