Abstract

An oxovanadium(IV) – curcumin based complex, viz. [VO(cur)(2,2´-bipy)(H2O)] where cur is curcumin and bipy is bipyridine, previously synthesized, has been studied for interaction with albumin and DNA. Fluorescence emission spectroscopy was used to evaluate the interaction of the complex with bovine serum albumin (BSA) and the BSA-binding constant (Kb) was calculated to be 2.56 x 105 M-1, whereas a single great-affinity binding site was revealed. Moreover, the hemocompatibility test demonstrated that the complex presented low hemolytic fraction (mostly below 1%), in all concentrations tested (0-250 μΜ of complex, 5% DMSO) assuring a safe application in interaction with blood. The binding of the complex to DNA was also investigated using absorption, fluorescence, and viscometry methods indicating a binding through a minor groove mode. From competitive studies with ethidium bromide the apparent binding constant value to DNA was estimated to be 4.82 x 106 M-1. Stern-Volmer quenching phenomenon gave a ΚSV constant [1.92 (± 0.05) x 104 M-1] and kq constant [8.33 (± 0.2) x 1011 M-1s-1]. Molecular docking simulations on the crystal structure of BSA, calf thymus DNA, and DNA gyrase, as well as pharmacophore analysis for BSA target, were also employed to study in silico the ability of [VO(cur)(2,2´-bipy)(H2O)] to bind to these target bio-macromolecules and explain the observed in vitro activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.