Abstract
In this work, a high-throughput screening strategy and density functional theory (DFT) are jointly employed to identify high-performance TM@g-C4N3 (TM = 3d, 4d, 5d transition metals) single-atom catalysts (SACs) for the oxygen reduction reaction (ORR). Comprehensive studies demonstrated that Cu@, Zn@, and Ag@g-C4N3 show high ORR catalytic activities under both acidic and alkaline conditions with favorable overpotentials (ηORR) of 0.70, 0.89, and 0.89 V, respectively; among them, Cu@g-C4N3 is the best candidate. The ORR follows a four-electron mechanism with the final product H2O/OH-. Cu@, Zn@, and Ag@g-C4N3 catalysts also exhibit good thermal (500 K) and electrochemical (0.93-3.14 V) stabilities. Cu@, Zn@, and Ag@g-C4N3 demonstrate superior activities with low ηORR due to its moderate adsorption strength of *OH. The ηORR and the Gibbs free energy changes of *OH (ΔG4(acidic)/ΔG4(alkaline)) resemble a volcano-type relationship under acidic/alkaline conditions, respectively. Additionally, the O-O bond length in *OOH emerged as an effective structural descriptor for rapidly identifying the promising electrocatalysts. This research provides valuable insights into the origin of the ORR activity on TM@g-C4N3 and offers useful guidance for the efficient exploration of high-performance catalyst candidates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.