Abstract
The absorption spectra of the first electronic exited state of alkali metal atoms on helium nanodroplets formed of both 4He and 3He isotopes were studied experimentally as well as theoretically. In the experimental part new data on the 2p<--2s transition of lithium on 3He nanodroplets are presented. The absorption spectrum changes drastically when compared to 4He droplets, in contrast to sodium where only marginal differences were observed in former studies. To explain these large differences and to answer some still open questions concerning the interaction of alkali metal atoms with helium nanodroplets, a model calculation was performed. New helium density profiles as well as a refined model allowed us to achieve good agreement with the experimental findings. For the first time the red-shifted intensities in the lithium and sodium spectra are explained in terms of enhanced binding configurations in the excited state displaced spatially from the ground state configurations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.