Abstract

Piezo-photocatalysis is a frontier technology for converting mechanical and solar energies into crucial chemical substances and has emerged as a promising and sustainable strategy for N2 fixation. Here, for the first time, defects and piezoelectric field are synergized to achieve unprecedented piezo-photocatalytic nitrogen reduction reaction (NRR) activity and their collaborative catalytic mechanism is unraveled over BaTiO3 with tunable oxygen vacancies (OVs). The introduced OVs change the local dipole state to strengthen the piezoelectric polarization of BaTiO3 , resulting in a more efficient separation of photogenerated carrier. Ti3+ sites adjacent to OVs promote N2 chemisorption and activation through d-π back-donation with the help of the unpaired d-orbital electron. Furthermore, a piezoelectric polarization field could modulate the electronic structure of Ti3+ to facilitate the activation and dissociation of N2 , thereby substantially reducing the reaction barrier of the rate-limiting step. Benefitting from the synergistic reinforcement mechanism and optimized surface dynamics processes, an exceptional piezo-photocatalytic NH3 evolution rate of 106.7µmolg-1 h-1 is delivered by BaTiO3 with moderate OVs, far surpassing that of previously reported piezocatalysts/piezo-photocatalysts. New perspectives are provided here for the rational design of an efficient piezo-photocatalytic system for the NRR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.