Abstract

Mixed-halide perovskites show tunable emission wavelength across the visible-light range, with optimum control of the light color. However, color stability remains limited due to the notorious halide segregation under illumination or an electric field. Here, a versatile path toward high-quality mixed-halide perovskites with high emission properties and resistance to halide segregation is presented. Through systematic in and ex situ characterizations, key features for this advancement are proposed: a slowed and controllable crystallization process can promote achievement of halide homogeneity, which in turn ensures thermodynamic stability; meanwhile, downsizing perovskite nanoparticle to nanometer-scale dimensions can enhance their resistance to external stimuli, strengthening the phase stability. Leveraging this strategy, devices are developed based on CsPbCl1.5 Br1.5 perovskite that achieves a champion external quantum efficiency (EQE) of 9.8% at 464nm, making it one of the most efficient deep-blue mixed-halide perovskite light-emitting diodes (PeLEDs) to date. Particularly, the device demonstrates excellent spectral stability, maintaining a constant emission profile and position for over 60 min of continuous operation. The versatility of this approach with CsPbBr1.5 I1.5 PeLEDs is further showcased, achieving an impressive EQE of 12.7% at 576nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.