Abstract

Converting solar energy into chemical fuels is increasingly receiving a great deal of attention. In this work, CdS nanoparticles (NPs) are solvothermally anchored onto graphene nanoribbons (GNRs) that are longitudinally unzipped from multiwalled carbon nanotubes. The as-synthesized CdS/GNR nanocomposites with recyclability present GNR content-dependent activity in visible-light-driven hydrogen evolution from water splitting. In a range of 1-10 wt% GNRs, the CdS/GNR composites with 2 wt% GNRs achieves the greatest hydrogen evolution rate of 1.89 mmol h-1 g-1 . The corresponding apparent quantum efficiency is 19.3%, which is ≈3.7 times higher than that of pristine CdS NPs. To elucidate the underlying photocatalytic mechanism, a systematic characterization, including in situ irradiated X-ray photoelectron spectroscopy and Kelvin probe measurements, is performed. In particular, the interfacial charge transfer pathway and process from CdS NPs to GNRs is revealed. This work may open avenues to fabricate GNR-based nanocomposites for solar-to-chemical energy conversion and beyond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.