Abstract

ObjectiveAortic dissection remains a life-threatening condition necessitating accurate diagnosis and timely intervention. This study aimed to investigate phenotypic heterogeneity in patients with Stanford type B aortic dissection (TBAD) through machine learning clustering analysis of cardiovascular computed tomography (CT) imaging. MethodsElectronic medical records were collected to extract demographic and clinical features of patients with TBAD. Exclusion criteria ensured homogeneity and clinical relevance of the TBAD cohort. Controls were selected on the basis of age, comorbidity status, and imaging availability. Aortic morphological parameters were extracted from CT angiography and subjected to K-means clustering analysis to identify distinct phenotypes. ResultsClustering analysis revealed three phenotypes of patients with TBAD with significant correlations with population characteristics and dissection rates. This pioneering study used CT-based three-dimensional reconstruction to classify high-risk individuals, demonstrating the potential of machine learning in enhancing diagnostic accuracy and personalized treatment strategies. Recent advancements in machine learning have garnered attention in cardiovascular imaging, particularly in aortic dissection research. These studies leverage various imaging modalities to extract valuable features and information from cardiovascular images, paving the way for more personalized interventions. ConclusionThis study provides insights into the phenotypic heterogeneity of patients with TBAD using machine learning clustering analysis of cardiovascular CT imaging. The identified phenotypes exhibit correlations with population characteristics and dissection rates, highlighting the potential of machine learning in risk stratification and personalized management of aortic dissection. Further research in this field holds promise for improving diagnostic accuracy and treatment outcomes in patients with aortic dissection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.