Abstract

Phytoplasmas are minute phytopathogenic bacteria that induce excessive vegetative growth, known as witches'-broom (WB), in many infected plant species during the later stages of infection. The WB structure is characterized by densely clustered little (small) leaves, which are frequently accompanied by chlorosis (yellowing). The mechanisms behind the formation of little leaves within WB structures (LL-WB) are poorly understood. To address this gap, the LL-WB formation was extensively studied using sweet cherry virescence (SCV) phytoplasma-infected sweet cherry plants. Based on morphological examinations, signs of premature leaf senescence were observed in LL-WB samples, including reduced leaf size, chlorosis, and alterations in shape. Subsequent physiological analyses indicated decreased sucrose and glucose levels and changes in hormone concentrations in LL-WB samples. Additionally, the transcriptomic analysis revealed impaired ribosome biogenesis and DNA replication. As an essential process in protein production, the compromised ribosome biogenesis and the inhibited DNA replication led to cell cycle arrest, thus affecting leaf morphogenesis and further plant development. Moreover, the expression of marker genes involved in premature leaf senescence was significantly altered. These results indicate a complicated interplay between the development of leaves, premature leaf senescence, and the pathogen-induced stress responses in SCV phytoplasma-infected sweet cherry trees. The results of this study provide insight into understanding the underlying molecular mechanisms driving the formation of little leaves and interactions between plants and pathogens. The findings might help control phytoplasma diseases in sweet cherry cultivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.