Abstract

The hydrogenation of carbon dioxide to formate is an intriguing reaction from both an environmental and an energy perspective, primarily due to the prospective uses of the product as a platform chemical in numerous applications such as an organic hydrogen carrier. Although several transition-metal-based catalysts have been shown to facilitate this chemical transformation, few guidelines exist on how best to tune the catalysts in order to achieve maximum activity. Here, we use linear scaling relationships and molecular volcano plots to gauge the potential of different metal–pincer catalysts for the aforementioned reaction. Analysis of combinations of five metals (Ru, Os, Co, Rh, and Ir) and seven tridentate pincer-type ligands reveals several complexes lying near the volcano top, suggesting that these species have nearly ideal energetic profiles for facilitating the hydrogenation reaction. In particular, catalysts bearing group 9 metal centers (Ir, Rh, Co) with π-acidic ligands provide a clear route to imp...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.