Abstract

Rare heterozygous deletions in the neurexin 1 (NRXN1) gene robustly increase an individual's risk of developing neurological and psychiatric disorders. However, the molecular bases by which different mutations result in different clinical presentations, with variable penetrance, are unknown. To better understand the molecular and cellular consequences of heterozygous NRXN1 mutations, Flaherty and colleagues studied how patient mutations influence the NRXN1 isoform repertoire and neuronal phenotypes using induced pluripotent stem (iPS) cells. Advancing from disease association to mechanistic insights, the authors provide insight into how patient mutations might impinge on neuronal function. This research highlights the value of iPS cells for elucidating otherwise elusive links between molecular and neuronal function. In addition, they provide further evidence of the importance of alternative splicing in the pathophysiology of neuropsychiatric diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.