Abstract

Long-range residual dipolar couplings (lrRDCs) have the potential to serve as powerful structural restraints in protein NMR spectroscopy as they can provide both distance and orientation information about nuclei separate in sequence but close in space. Current nonselective methods for their measurement are limited to moderate alignment strengths due to the sheer abundance of active couplings at stronger alignment. This limits the overall magnitude and therefore distance across which couplings can be measured. We have developed a double resonance technique for the inversion of individual coupled spin pairs, called Selective Inversion by Single Transition Cross Polarization (SIST-CP). This technique enables the selective recoupling of lrRDCs, thus allowing the complex multiplets occurring in strongly aligned systems to be disentangled. This technique is demonstrated in the context of an application to the measurement of 13C′–1HN lrRDCs in strongly aligned proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.