Abstract

The cotton rose (Hibiscus mutabilis) is a plant species commonly found in tropical and subtropical regions. It is remarkably resilient to waterlogging stress; however, the underlying mechanism behind this trait is yet unknown. This study used hypoxia-tolerant "Danbanhong" (DBH) and more hypoxia-sensitive "Yurui" (YR) genotypes and compared their morpho-physiological and transcriptional responses to hypoxic conditions. Notably, DBH had a higher number of adventitious roots (20.3) compared to YR (10.0), with longer adventitious roots in DBH (18.3 cm) than in YR (11.2 cm). Furthermore, the formation of aerenchyma was 3-fold greater in DBH compared to YR. Transcriptomic analysis revealed that DBH had more rapid transcriptional responses to hypoxia than YR. Identification of a greater number of differentially expressed genes (DEGs) for aerenchyma, adventitious root formation and development, and energy metabolism in DBH supported that DBH had better morphological and transcriptional adaptation than YR. DEG functional enrichment analysis indicated the involvement of variety-specific biological processes in adaption to hypoxia. Plant hormone signaling transduction, MAPK signaling pathway and carbon metabolism played more pronounced roles in DBH, whereas the ribosome genes were specifically induced in YR. These results show that effective multilevel coordination of adventitious root development and aerenchyma, in conjunction with plant hormone signaling and carbon metabolism, is required for increased hypoxia tolerance. This study provides new insights into the characterization of morpho-physiological and transcriptional responses to hypoxia in H. mutabilis, shedding light on the molecular mechanisms of its adaptation to hypoxic environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.