Abstract
We consider quantile regressions for adequate cyber-insurance pricing across heterogenous policyholders and calculation of claims cost associated with data breach events. We show that the impact of a firm's revenue is stronger (weaker) in the lower (upper) quantile of the cost distribution. This result suggests that mispricing may occur if small and large firms are priced using the average effect estimated by the traditional least squares approach. Using a novel dataset, our study is the first to take firm-specific security information into account. We find that firms with weaker security levels than the industry average are more likely to be exposed to large-cost events. Regarding data breaches, small or mid-size loss events are related to higher cost per breached record. We compare the premiums of a quantile-based insurance pricing scheme with those of a two-part generalized linear model and the Tweedie model to explore the usefulness of the quantile-based model in addressing heterogeneous effects of firm size. Our findings provide useful implications for cyber insurers and policymakers who wish to assess the impacts of firm-specific factors in pricing insurance and to estimate the cost of claims.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.