Abstract

Progress toward practical rechargeable aqueous zinc (Zn) batteries is impeded by the low energy density. The use of tellurium (Te) cathodes featuring multielectron redox reactions offers one possible approach to mitigating this dilemma. However, the corresponding energy-storage mechanisms in aqueous electrolytes are not established yet. Here, we uncover a H+/Zn2+-involved sequential conversion reaction with 6e- transfer for Te-based cathodes, which accounts for the outstanding capacity (over 460 mAh g-1 at 50 mA g-1). Two distinct redox processes, corresponding to TeO2 ↔ Te and Te ↔ ZnTe, are explicitly revealed within the electrochemical window of routine aqueous Zn electrolytes. The mechanism elucidated here complements the understanding of energy-dense Te centers and propels the exploration of high-capacity electrodes for multivalent battery chemistries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.