Abstract

Air pollution imposes significant environmental and health risks worldwide and is expected to deteriorate in the coming decade as cities expand. Measuring population exposure to air pollution is crucial to quantifying risks to public health. In this work, we introduce a big data analytics framework to model residents' stay and commuters' travel exposure to outdoor PM2.5 and evaluate their environmental justice, with Beijing as an example. Using mobile phone and census data, we first infer travel demand of the population to derive residents' stay activities in each analysis zone, and then focus on commuters and estimate their travel routes with a traffic assignment model. Based on air quality observations from monitoring stations and a spatial interpolation model, we estimate the outdoor PM2.5 concentrations at a 500-m grid level and map them to road networks. We then estimate the travel exposure for each road segment by multiplying the PM2.5 concentration and travel time spent on the road. By combining the estimated PM2.5 exposure and housing price harnessed from online housing transaction platforms, we discover that in the winter, Beijing commuters with low wealth level are exposed to 13% more PM2.5 per hour than those with high wealth level when staying at home, but exposed to less PM2.5 by 5% when commuting the same distance (due to lighter traffic congestion in suburban areas). We also find that the residents from the southern suburbs of Beijing have both lower level of wealth and higher stay- and travel- exposure to PM2.5, especially in the winter. These findings inform more equitable environmental mitigation policies for future sustainable development in Beijing. Finally, or the first time in the literature, we compare the results of exposure estimated from passive data with subjective measures of perceived air quality (PAQ) from a survey. The PAQ data was collected via a mobile-app. The comparison confirms consistencies in results and the advantages of the big data for air pollution exposure assessments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.