Abstract

Building a comprehensive topic model has become an important research tool in single-cell genomics. With a topic model, we can decompose and ascertain distinctive cell topics shared across multiple cells, and the gene programs implicated by each topic can later serve as a predictive model in translational studies. Here, we present a Bayesian topic model that can uncover short-term RNA velocity patterns from a plethora of spliced and unspliced single-cell RNA-sequencing (RNA-seq) counts. We showed that modeling both types of RNA counts can improve robustness in statistical estimation and can reveal new aspects of dynamic changes that can be missed in static analysis. We showcase that our modeling framework can be used to identify statistically significant dynamic gene programs in pancreatic cancer data. Our results discovered that seven dynamic gene programs (topics) are highly correlated with cancer prognosis and generally enrich immune cell types and pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.