Abstract
Poly(amidoamine) (PAMAM) dendrimers are promising candidates in several applications within the medical field. However, it is still to date not fully understood whether they are able to passively translocate across lipid bilayers. Recently, we used fluorescence microscopy to show that PAMAM dendrimers induced changes in the permeability of lipid membranes but the dendrimers themselves could not translocate to be released into the vesicle lumen. Because of the lack of resolution, these experiments could not assess whether the dendrimers were able to translocate but remained attached to the membrane. Using quartz crystal microbalance with dissipation monitoring and neutron reflectivity, a structural investigation was performed to determine how dendrimers interact with zwitterionic and negatively charged lipid bilayers. We hereby show that dendrimers adsorb on top of lipid bilayers without significant dendrimer translocation, regardless of the lipid membrane surface charge. Thus, most likely dendrimers are actively transported through cell membranes by protein-mediated endocytosis in agreement with previous cell studies. Finally, the higher activity of PAMAM dendrimers for phosphoglycerol-containing membranes is in line with their high antimicrobial activity against Gram-negative bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.