Abstract
Understanding current-induced bond rupture in single-molecule junctions is both of fundamental interest and a prerequisite for the design of molecular junctions, which are stable at higher-bias voltages. In this work, we use a fully quantum mechanical method based on the hierarchical quantum master equation approach to analyze the dissociation mechanisms in molecular junctions. Considering a wide range of transport regimes, from off-resonant to resonant, non-adiabatic to adiabatic transport, and weak to strong vibronic coupling, our systematic study identifies three dissociation mechanisms. In the weak and intermediate vibronic coupling regime, the dominant dissociation mechanism is stepwise vibrational ladder climbing. For strong vibronic coupling, dissociation is induced via multi-quantum vibrational excitations triggered either by a single electronic transition at high bias voltages or by multiple electronic transitions at low biases. Furthermore, the influence of vibrational relaxation on the dissociation dynamics is analyzed and strategies for improving the stability of molecular junctions are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.