Abstract

The chemical interaction between Ti and graphene is of significant interest for engineering low-resistance electrical contacts. To study the interface chemistry, sequential depositions of Ti are performed on both as-received and ultrahigh-vacuum (UHV)-annealed chemical-vapor-deposition-grown graphene samples. In situ X-ray photoelectron spectroscopy (XPS) reveals no experimental evidence for the reaction of Ti with graphene at room temperature or after heating to 500 °C. The presence of the TiC chemical state is instead attributed to reactions between Ti and background gases in the UHV chamber as well as adventitious C on the surface of the graphene sample. We find that surface contamination can be substantially reduced by annealing in UHV. The deposition of Ti on graphene results in n-type doping, which manifests in core-level shifts and broadening of the graphene C 1s peak. Annealing the sample following the deposition of Ti reverses the n-type doping. The Raman spectroscopy results are in agreement wit...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.