Abstract

By means of spin-polarized density functional theory (DFT) computations, we unravel the reaction mechanisms of catalytic CO oxidation on B-doped fullerene. It is shown that O2 species favors to be chemically adsorbed via side-on configuration at the hex-C–B site with an adsorption energy of −1.07 eV. Two traditional pathways, Eley–Rideal (ER) and Langmuir–Hinshelwood (LH) mechanisms, are considered for the CO oxidation starting from O2 adsorption. CO species is able to bind at the B-top site of the B-doped fullerene with an adsorption energy of −0.78 eV. Therefore, CO oxidation that occurs starting from CO adsorption is also taken into account. Second reaction of CO oxidation occurs by the reaction of CO + O → CO2 with a very high energy barrier of 1.56 eV. A trimolecular Eley–Rideal (TER) pathway is proposed to avoid leaving the O atom on the B-doped fullerene after the first CO oxidation. These predictions manifest that boron-doped fullerene is a potential metal-free catalyst for CO oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.