Abstract

COVID-19 is a deadly pandemic caused by Corona virus leading to millions of deaths worldwide. Till today no medicine was available to cure this disease. This study selected 262 potential bioactive natural products derived from mangroves to inhibit the main protease (Mpro) and receptor-binding domain (RBD) protein of the COVID-19 virus. All the ligands were subjected to Adsorption Digestion Metabolism Excretion and Toxicity (ADMET) predictions and docking studies using AutodockVina. Among all the ligands, NP_143 (Shearinine A) and NP_242 (Amentoflavone), having the highest docking score of 10.2 and 10.1 Kj/mole, respectively, were picked for 100 ns of Molecular Dynamics using GROMACS. The trajectories generated were used to estimate Root mean square deviation (RMSD), Root mean square fluctuations (RMSF), Radius of Gyrations (RG), Solvent accessible surface area (SASA), and Hydrogen bonds. From the data generated, both the ligands have good binding ability at the active site of Mpro protein and do not deviate much. They have strong interactions with the amino acids during the 100 ns of simulations and can thus be considered potential drug candidates. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.