Abstract

Cardiac arrhythmias, characterized by deviations from the normal rhythmic contractions of the heart, pose a formidable diagnostic challenge. Early and accurate detection remains an integral component of effective diagnosis, informing critical decisions made by cardiologists. This review paper surveys diverse computational intelligence methodologies employed for arrhythmia analysis within the context of the widely utilized MIT-BIH dataset. The paucity of adequately annotated medical datasets significantly impedes advancements in various healthcare domains. Publicly accessible resources such as the MIT-BIH Arrhythmia Database serve as invaluable tools for evaluating and refining computer-assisted diagnosis (CAD) techniques specifically targeted toward arrhythmia detection. However, even this established dataset grapples with the challenge of class imbalance, further complicating its effective analysis. This review explores the current research landscape surrounding the application of graph-based approaches for both anomaly detection and classification within the MIT-BIH database. By analyzing diverse methodologies and their respective accuracies, this investigation aims to empower researchers and practitioners in the field of ECG signal analysis. The ultimate objective is to refine and optimize CAD algorithms, ultimately culminating in improved patient care outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call