Abstract
A cathode/anode compatible aqueous zinc triflate electrolyte is proposed by reorganizing the solvation structure of the electrolyte using an acetonitrile co-solvent. Acetonitrile notably alters the hydrogen bonds of the electrolyte, reducing the activity of water. Using this electrolyte, a ZnǁV2O5 full-cell exhibits high Coulombic efficiency, long cycle life and high rate capability. The interactions between electrolyte, cathode and Zn anode are clarified based on comprehensive in operando and ex situ experiments and molecular dynamics simulations. The addition of acetonitrile does not change the bulk ion storage of V2O5, but the unique electrode-electrolyte interfacial films with specific compositions and spatial distribution protect the Zn and V2O5 electrodes and improve the interfacial kinetics of the electrodes, thus significantly promoting the cycling performance of the full cell. This cathode/anode compatible electrolyte can overcome the challenges of both the cathode and anode which would promote aqueous rechargeable zinc batteries into practical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.