Abstract

Although small interfering RNA (siRNA) therapy has achieved great progress, unwanted gene inhibition in normal tissues severely limits its extensive clinical applications due to uncontrolled siRNA biodistribution. Herein, a spatially controlled siRNA activation strategy is developed to achieve tumor-specific siRNA therapy without gene inhibition in the normal tissues. The quaternary ammonium moieties are conjugated to amphiphilic copolymers via reactive oxygen species (ROS)-sensitive thioketal (TK) linkers for co-delivery of siRNA and photosensitizer chlorin e6 (Ce6), showing excellent siRNA complexation capacity and near infrared (NIR)-controlled siRNA release. In the normal tissue, siRNAs are trapped and degraded in the endo-lysosomes due to the unprotonatable property of quaternary ammonium moiety, showing the siRNA activity "off" state. When NIR irradiation is spatially applied to the tumor tissue, the NIR irradiation/Ce6-induced ROS trigger siRNA endo-lysosomal escape and cytosolic release through the photochemical internalization effect and cleavage of TK bonds, respectively, showing the siRNA activity "on" state. The siRNA-mediated glutathione peroxidase 4 gene inhibition enhances ROS accumulation. The synergistic antitumor activity of Ce6 photodynamic therapy and gene inhibition is confirmed in vivo. Spatially controlled tumor-specific siRNA activation and co-delivery with Ce6 using unprotonatable and ROS-sensitive cationic nanocarriers provide a feasible strategy for tumor-specific siRNA therapy with synergistic drug effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call