Abstract

BackgroundRecent mapping of eukaryotic transcriptomes and spliceomes using massively parallel RNA sequencing (RNA-seq) has revealed that the extent of alternative splicing has been considerably underestimated. Evidence also suggests that many pre-mRNAs undergo unproductive alternative splicing resulting in incorporation of in-frame premature termination codons (PTCs). The destinies and potential functions of the PTC-harboring mRNAs remain poorly understood. Unproductive alternative splicing in circadian clock genes presents a special case study because the daily oscillations of protein expression levels require rapid and steep adjustments in mRNA levels.ResultsWe conducted a systematic survey of alternative splicing of plant circadian clock genes using RNA-seq and found that many Arabidopsis thaliana circadian clock-associated genes are alternatively spliced. Results were confirmed using reverse transcription polymerase chain reaction (RT-PCR), quantitative RT-PCR (qRT-PCR), and/or Sanger sequencing. Intron retention events were frequently observed in mRNAs of the CCA1/LHY-like subfamily of MYB transcription factors. In contrast, the REVEILLE2 (RVE2) transcript was alternatively spliced via inclusion of a "poison cassette exon" (PCE). The PCE type events introducing in-frame PTCs are conserved in some mammalian and plant serine/arginine-rich splicing factors. For some circadian genes such as CCA1 the ratio of the productive isoform (i.e., a representative splice variant encoding the full-length protein) to its PTC counterpart shifted sharply under specific environmental stress conditions.ConclusionsOur results demonstrate that unproductive alternative splicing is a widespread phenomenon among plant circadian clock genes that frequently generates mRNA isoforms harboring in-frame PTCs. Because LHY and CCA1 are core components of the plant central circadian oscillator, the conservation of alternatively spliced variants between CCA1 and LHY and for CCA1 across phyla [2] indicates a potential role of nonsense transcripts in regulation of circadian rhythms. Most of the alternatively spliced isoforms harbor in-frame PTCs that arise from full or partial intron retention events. However, a PTC in the RVE2 transcript is introduced through a PCE event. The conservation of AS events and modulation of the relative abundance of nonsense isoforms by environmental and diurnal conditions suggests possible regulatory roles for these alternatively spliced transcripts in circadian clock function. The temperature-dependent expression of the PTC transcripts among members of CCA1/LHY subfamily indicates that alternative splicing may be involved in regulation of the clock temperature compensation mechanism.ReviewersThis article was reviewed by Dr. Eugene Koonin, Dr. Chungoo Park (nominated by Dr. Kateryna Makova), and Dr. Marcelo Yanovsky (nominated by Dr. Valerian Dolja).

Highlights

  • Recent mapping of eukaryotic transcriptomes and spliceomes using massively parallel RNA sequencing (RNA-seq) has revealed that the extent of alternative splicing has been considerably underestimated

  • The distributions of RNA-seq reads plotted across gene features for the majority of known Arabidopsis circadian genes were first visually inspected in GBrowse for evidence of novel alternative splicing events as described in the Methods with emphasis on isoform-specific "diagnostic" gene regions that frequently display differential coverage by Illumina reads in response to specific stress treatments [2]

  • The distributions of the RNA-seq reads across introns annotated in The Arabidopsis Information Resource database (TAIR10; http://www.arabidopsis.org) were evaluated using the GENE-Counter package [3]

Read more

Summary

Introduction

Recent mapping of eukaryotic transcriptomes and spliceomes using massively parallel RNA sequencing (RNA-seq) has revealed that the extent of alternative splicing has been considerably underestimated. Unproductive alternative splicing in circadian clock genes presents a special case study because the daily oscillations of protein expression levels require rapid and steep adjustments in mRNA levels. Interrogation of the transcriptomes of several plant species using genome-scale expression microarrays revealed that many plant genes display diurnally driven rhythmic daily changes in mRNA abundance [1]. The core circadian clock genes of Oryza subspecies japonica and indica displayed nearly indistinguishable oscillation profiles and phase calls [1]. The microarray platform has been a method of choice for genome-scale profiling of daily cyclical changes in mRNA abundance. RNA-seq coupled with bioinformatic analyses allows direct inference of transcript structures relative to the reference genome and unbiased characterization of alternatively spliced events

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call