Abstract
The hippocampal complex of birds is a narrow-curved strip of tissue that plays a crucial role in learning, memory, spatial navigation, and emotional and sexual behavior. This study was conducted to evaluate the effect of unpredictable chronic mild stress in multipolar neurons of 3-, 5-, 7-, and 9-week-old chick's hippocampal complex. This study revealed that chronic stress results in neuronal remodeling by causing alterations in dendritic field, axonal length, secondary branching, corrected spine number, and dendritic branching at 25, 50, 75, and 100µm. Due to stress, the overall dendritic length was significantly retracted in 3-week-old chick, whereas no significant difference was observed in 5- and 7-week-old chick, but again it was significantly retracted in 9-week-old chick along with the axonal length. So, this study indicates that during initial days of stress exposure, the dendritic field shows retraction, but when the stress continues up to a certain level, the neurons undergo structural modifications so that chicks adapt and survive in stressful conditions. The repeated exposure to chronic stress for longer duration leads to the neuronal structural disruption by retraction in the dendritic length as well as axonal length. Another characteristic which leads to structural alterations is the dendritic spines which significantly decreased in all age groups of stressed chicks and eventually leads to less synaptic connections, disturbance in physiology, and neurology, which affects the learning, memory, and coping ability of an individual.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.