Abstract
Thermoplastic polysiloxane-based polyurethane (Si-TPU) has been attracting a great deal of attention because of the dual advantages of polysiloxane and polyurethane. However, the strength of Si-TPU with a traditional structure is low, and improvement is urgently needed for diverse applications. Herein, we design a polysiloxane-based soft segment (SS) with two urethane groups at the end of the polysiloxane chain, and then we prepare a series of Si-TPUs through a designed SS, isophorone diisocyanate and 1,4-butanediol. Such structural design improves the polarity of the SS and endows more regular hydrogen bonds to the polymer molecular chain. As a result, the prepared Si-TPUs exhibit a good microphase separation structure, unprecedentedly high strength, repeatable processing, noncytotoxicity, shape memory properties, and three-dimensional printing capabilities. Moreover, a maximum tensile strength of Si-TPUs can reach 20.3 MPa, exceeding that of other existing Si-based polymer materials. Si-TPUs show great potential for biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.