Abstract

The planar yeast estrogen screen (p-YES) can serve as a highly valuable and sensitive screening tool for the detection of estrogenic compounds in various sample matrices such as water and wastewater, personal care products and foodstuff. The method combines the separation of sample constituents by thin layer chromatography with the direct detection of estrogenic compounds on the surface of the HPTLC-plate. The previous protocol using the immersion of a normal phase silica HPTLC-plate in a cell suspension for bio-autography resulted in blurred signals due to the accelerated diffusion of compounds on the wet surface of the HPTLC-plate. Here, the application of the yeast cells by spraying on the surface of the HPTLC-plate is described as an alternative approach. The presented method for the hyphenation of normal phase thin layer chromatography with a yeast estrogen screen results in much sharper signals compared to reports in previous publications. Satisfying results were achieved using cultures with cell densities of 1000 FAU. Due to the reduced signal broadening, lower limits of quantification for estrogenic compounds were achieved (Estrone (E1)=2pg/zone, 17β-estradiol (E2)=0.5pg/zone, 17α-ethinylestradiol (EE2)=0.5pg/zone and Estriol (E3)=20pg/zone). As demonstrated, it is possible to characterize profiles of estrogenic activity of wastewater samples with high quality and reproducibility. The improved sensitivity opens the stage for applications using native samples from waste- or even surface water directly applied on HPTLC-plates without the need for prior sample treatment by e.g. solid phase extraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.