Abstract
AbstractCrystal polymorphism, characterized by different packing arrangements of the same compound, strongly ties to the physical properties of a molecule. Determining the polymorphic landscape is complex and time‐consuming, with the number of experimentally observed polymorphs varying widely from molecule to molecule. Furthermore, disappearing polymorphs, the phenomenon whereby experimentally observed forms cannot be reproduced, pose a significant challenge for the pharmaceutical industry. Herein, we focused on oxindole (OX), a small rigid molecule with four known polymorphs, including a reported disappearing form. Using crystal structure prediction (CSP), we assessed OX solid‐state landscape and thermodynamic stability by comparing predicted structures with experimentally known forms. We then performed melt and solution crystallization in bulk and nanoconfinement to validate our predictions. These experiments successfully reproduced the known forms and led to the discovery of four novel polymorphs. Our approach provided insights into reconstructing disappearing polymorphs and building more comprehensive polymorph landscapes. These results also establish a new record of packing polymorphism for rigid molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.