Abstract

Lattice thermal conductivity (κ) of bulk materials usually increases under compression and decreases under tension, while there are still some unusual systems, exhibiting reduced κ when compressed. However, to date it has never been reported for a bulk material, whose κ is substantially enhanced under tensile strain. In this paper, we have studied thermal transport of three auxetic carbon crystals: cis-C, trans-C and hin-C for short, and their strain responses by performing first-principles calculations. It is intriguing to find that their κ are much lower than those of their allotropes, and further decrease abnormally under compression. More strikingly, κ of trans-C (cis-C) anomalously increases with tensile strain up to 7% (6%) with maximum κ of almost 7 (5) times larger than the unstrained value. The abnormal strain dependent κ are attributed to the dominant role of the enhancement of phonon lifetime under stretching, which can be further explained from the unique atomic structure of the main chain of polydiacetylene in trans-C and cis-C. The weakening of phonon anharmonicity is reflected by the enhancement of root mean-square displacement values. The reported giant augmentation of κ may inspire intensive research on auxetic carbon crystals as potential materials for emerging nanoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.