Abstract

AbstractExposure of anisotropic crystal facets allows the directional transfer of photoexcited electrons (e−) and holes (h+), for spatial charge separation. High‐index facets with a high density of low‐coordinated atoms always serve as reactive catalytic sites. However, preparation of multi‐facets or high‐index facets is highly challenging for layered bismuth‐based photocatalysts. Herein, we report the preparation of unprecedented eighteen‐faceted BiOCl with {001} top facets and {102} and {112} oblique facets via a hydrothermal process. Compared to the conventional BiOCl square plates with {001} top facets and {110} lateral facets, the eighteen‐faceted BiOCl has highly enhanced photocatalytic activity for H2 evolution and hydroxyl radicals (.OH) production. Theoretical calculations and photodeposition results disclose that the of eighteen‐faceted BiOCl has a well‐matched {001}/{102}/{112} ternary facet junction, which provides a cascade path for more efficient charge flow than the binary facet junction in BiOCl square plates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call