Abstract

Clouds represent a key uncertainty in future climate projection. While explicit cloud resolution remains beyond our computational grasp for global climate, we can incorporate important cloud effects through a computational middle ground called the Multi-scale Modeling Framework (MMF), also known as Super Parameterization. This algorithmic approach embeds high-resolution Cloud Resolving Models (CRMs) to represent moist convective processes within each grid column in a Global Climate Model (GCM). The MMF code requires no parallel data transfers and provides a self-contained target for acceleration. This study investigates the performance of the Energy Exascale Earth System Model-MMF (E3SM-MMF) code on the OLCF Summit supercomputer at an unprecedented scale of simulation. Hundreds of kernels in the roughly 10K lines of code in the E3SM-MMF CRM were ported to GPUs with OpenACC directives. A high-resolution benchmark using 4600 nodes on Summit demonstrates the computational capability of the GPU-enabled E3SM-MMF code in a full physics climate simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.