Abstract

Synthesizing unprecedented diamagnetic adducts of an endohedral metallofullerene was achieved by using 1,3-dipolar cycloaddition reaction of paramagnetic La@C(s)-C82 with a simultaneous hydrogen addition. The selective formation of two main products, La@C(s)-C82HCMe2NMeCHPh (2a and 2b), was first detected by HPLC analysis and MALDI-TOF mass spectrometry. 2a and 2b-O, which was readily formed by the oxidation of 2b, were isolated by multistep HPLC separation and were fully characterized by spectroscopic methods, including 1D and 2D-NMR, UV-vis-NIR measurements and electrochemistry. The hydrogen atom was found to be connected to the fullerene cage directly in the case of 2a, and the redox behavior indicated that the C-H bond can still be readily oxidized. The reaction mechanism and the molecular structures of 2a and 2b were reasonably proposed by the interplay between experimental observations and DFT calculations. The feasible order of the reaction process would involve a 1,3-dipolar cycloaddition followed by the hydrogen addition through a radical pathway. It is concluded that the characteristic electronic properties and molecular structure of La@C(s)-C82 resulted in a site-selective reaction, which afforded a unique chemical derivative of an endohedral metallofullerene in high yields. Derivative 2a constitutes the first endohedral metallofullerene where the direct linking of a hydrogen atom has been structurally proven.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.