Abstract

By introducing the unprecedented and flexible isomeric bis(pyridyl-tetrazole) ligands into a polyoxometalates (POMs) system, three POM-based compounds, {Ag2(4-bptzb)2(H2O)2[H2PMo12O40]2}·4-bptzb·5H2O (1), [Ag4(3-bptzb)2(PMo(V)Mo(VI)11O40)]·2H2O (2), and Ag3(3-bptzb)2.5(H2O)2[H3P2W18O62] (3) [4-bptzb = 1,4-bis(5-(4-pyridyl)tetrazolyl)butane and 3-bptzb =1,4-bis(5-(3-pyridyl)tetrazolyl)butane], were synthesized under hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction analyses. Compound 1 exhibits a dimeric structure constructed from two Keggin [PMo12O40](3-) anions and a binuclear [Ag2(trans-4-bptzb)2](2+) subunit in which the trans-4-bptzb acts as a bidentate bridging ligand with one tetrazolyl group. In 2, the 3-bptzb acts as a tetradentate bridging ligand with the tetrazolyl and pyridyl groups linking Ag(I) ions to generate a 3D metal-organic framework (MOF), which contains charming meso-helix chains. The Keggin anions acting as bidentate inorganic ligands reside in the distorted tetragonal channels of the MOF. In compound 3, the 3-bptzb adopts versatile coordination modes linking Ag(I) ions to first construct loop connecting loop 1D chains, which are linked by {Ag[P2W18O62]}n zigzag chains to form a scarce hamburger-style 2D sheet. These adjacent sheets are further fused by 3-bptzb ligands to construct a 3D framework. The influences of isomeric bptzb ligands and POMs on the construction of Ag-bptzb subunits and the whole structures of the title compounds are discussed. The electrochemical behaviors and electrocatalytic activities of compounds 2 and 3 and their corresponding parent POMs as well as the fluorescent properties of the title compounds have been studied in detail. In addition, the photocatalytic activities of compounds 2 and 3 and their corresponding parent POMs for decomposition of methylene blue, rhodamine B, and methyl orange under UV irradiation have also been investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.