Abstract

By introducing the unprecedented and flexible isomeric bis(pyridyl-tetrazole) ligands into a polyoxometalates (POMs) system, three POM-based compounds, {Ag2(4-bptzb)2(H2O)2[H2PMo12O40]2}·4-bptzb·5H2O (1), [Ag4(3-bptzb)2(PMo(V)Mo(VI)11O40)]·2H2O (2), and Ag3(3-bptzb)2.5(H2O)2[H3P2W18O62] (3) [4-bptzb = 1,4-bis(5-(4-pyridyl)tetrazolyl)butane and 3-bptzb =1,4-bis(5-(3-pyridyl)tetrazolyl)butane], were synthesized under hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction analyses. Compound 1 exhibits a dimeric structure constructed from two Keggin [PMo12O40](3-) anions and a binuclear [Ag2(trans-4-bptzb)2](2+) subunit in which the trans-4-bptzb acts as a bidentate bridging ligand with one tetrazolyl group. In 2, the 3-bptzb acts as a tetradentate bridging ligand with the tetrazolyl and pyridyl groups linking Ag(I) ions to generate a 3D metal-organic framework (MOF), which contains charming meso-helix chains. The Keggin anions acting as bidentate inorganic ligands reside in the distorted tetragonal channels of the MOF. In compound 3, the 3-bptzb adopts versatile coordination modes linking Ag(I) ions to first construct loop connecting loop 1D chains, which are linked by {Ag[P2W18O62]}n zigzag chains to form a scarce hamburger-style 2D sheet. These adjacent sheets are further fused by 3-bptzb ligands to construct a 3D framework. The influences of isomeric bptzb ligands and POMs on the construction of Ag-bptzb subunits and the whole structures of the title compounds are discussed. The electrochemical behaviors and electrocatalytic activities of compounds 2 and 3 and their corresponding parent POMs as well as the fluorescent properties of the title compounds have been studied in detail. In addition, the photocatalytic activities of compounds 2 and 3 and their corresponding parent POMs for decomposition of methylene blue, rhodamine B, and methyl orange under UV irradiation have also been investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.