Abstract

Considering the nucleon as consisting entirely of its valence quarks confined independently in a scalar-vector harmonic potential; unpolarized structure functions F1(x, μ2) and F2(x, μ2) are derived in the Bjorken limit under certain simplifying assumptions; from which valence quark distribution functions uv(x, μ2) and dv(x, μ2) are appropriately extracted satisfying the normalization constraints. QCD-evolution of these input distributions from a model scale of μ2=0.07 GeV2 to a higher Q2 scale of Q02=15 GeV2 yields xuv(x, Q02) and xdv(x, Q02) in good agreement with experimental data. The gluon and sea-quark distributions such as G(x, Q02) and qs(x, Q02) are dynamically generated with a reasonable qualitative agreement with the available data; using the leading order renormalization group equations with appropriate valence-quark distributions as the input.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call