Abstract

Recently, deep learning approaches for MR motion artifact correction have been extensively studied. Although these approaches have shown high performance and lower computational complexity compared to classical methods, most of them require supervised training using paired artifact-free and artifact-corrupted images, which may prohibit its use in many important clinical applications. For example, transient severe motion (TSM) due to acute transient dyspnea in Gd-EOB-DTPA-enhanced MR is difficult to control and model for paired data generation. To address this issue, here we propose a novel unpaired deep learning scheme that does not require matched motion-free and motion artifact images. Specifically, the first step of our method is k -space random subsampling along the phase encoding direction that can remove some outliers probabilistically. In the second step, the neural network reconstructs fully sampled resolution image from a downsampled k -space data, and motion artifacts can be reduced in this step. Last, the aggregation step through averaging can further improve the results from the reconstruction network. We verify that our method can be applied for artifact correction from simulated motion as well as real motion from TSM successfully from both single and multi-coil data with and without k -space raw data, outperforming existing state-of-the-art deep learning methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.