Abstract
For an incompatible patient-donor pair, kidney exchanges often forbid receipt-before-donation (the patient receives a kidney before the donor donates) and donation-before-receipt, causing a double-coincidence-of-wants problem. Our proposed algorithm, the Unpaired kidney exchange algorithm, uses “memory” as a medium of exchange to eliminate these timing constraints. In a dynamic matching model, we prove that Unpaired delivers a waiting time of patients close to optimal and substantially shorter than currently utilized state-of-the-art algorithms. Using a rich administrative dataset from France, we show that Unpaired achieves a match rate of 57 percent and an average waiting time of 440 days. The (infeasible) optimal algorithm is only slightly better (58 percent and 425 days); state-of-the-art algorithms deliver less than 34 percent and more than 695 days. We draw similar conclusions from the simulations of two large U.S. platforms. Lastly, we propose a range of solutions that can address the potential practical concerns of Unpaired. Institutional subscribers to the NBER working paper series, and residents of developing countries may download this paper without additional charge at www.nber.org.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.