Abstract

Founded on the need to help university students develop a greater academic metacognitive capacity, student-facing learning analytics are considered useful tools for making students overtly aware of their own learning processes, helping students to develop control over their learning, and subsequently supporting more effective learning. However, early research on the effectiveness of student-facing analytics is giving mixed results and is casting some doubt over the usefulness of student-facing learning analytics. One factor contributing to doubt over the value of student-facing learning analytics is that their design and implementation remains firmly rooted in the technical domain, with virtually no grounding in the knowledge base of learning and teaching. If the growing investment of resources into the development of student-facing learning analytics systems is to be fruitful, then there is an obvious, urgent need to re-position student-facing learning analytics within learning and teaching frameworks. With this in mind, we use Schraw & Dennison's model of metacognition and Vygotsky's zone of proximal development to unpack the ‘learning' in student-facing analytics and work towards an understanding of student-facing analytics that is more conducive to supporting metacognition and effective learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.