Abstract

Complex environmental model outputs used to inform decisions often have systematic errors and are of inappropriate resolution, requiring downscaling and bias correction for local applications. Here we provide a new interpretation of dasymetric modelling (DM) as a spatial bias correction framework useful in environmental modelling. DM is based on areal interpolation where estimates of some variable at target zones are obtained from overlapping source zones using ancillary information. We explore DM by downscaling runoff output from a distributed hydrological model using two meta-models and describe the properties of the methodology in detail. Consistent with properties of linear scaling bias correction, results show that the methodology 1) reduces errors compared to the source data and meta-models, 2) improve the spatial structure of the estimates, and 3) improve the performance of the downscaled estimates, particularly where meta-models perform poorly. The framework is simple and useful in ensuring spatial coherence of downscaled products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.