Abstract
People often indicate a higher price for an object when they own it (i.e., as sellers) than when they do not (i.e., as buyers)—a phenomenon known as the endowment effect. We develop a cognitive modeling approach to formalize, disentangle, and compare alternative psychological accounts (e.g., loss aversion, loss attention, strategic misrepresentation) of such buyer-seller differences in pricing decisions of monetary lotteries. To also be able to test possible buyer-seller differences in memory and learning, we study pricing decisions from experience, obtained with the sampling paradigm, where people learn about a lottery’s payoff distribution from sequential sampling. We first formalize different accounts as models within three computational frameworks (reinforcement learning, instance-based learning theory, and cumulative prospect theory), and then fit the models to empirical selling and buying prices. In Study 1 (a reanalysis of published data with hypothetical decisions), models assuming buyer-seller differences in response bias (implementing a strategic-misrepresentation account) performed best; models assuming buyer-seller differences in choice sensitivity or memory (implementing a loss-attention account) generally fared worst. In a new experiment involving incentivized decisions (Study 2), models assuming buyer-seller differences in both outcome sensitivity (as proposed by a loss-aversion account) and response bias performed best. In both Study 1 and 2, the models implemented in cumulative prospect theory performed best. Model recovery studies validated our cognitive modeling approach, showing that the models can be distinguished rather well. In summary, our analysis supports a loss-aversion account of the endowment effect, but also reveals a substantial contribution of simple response bias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.