Abstract

Analyzing irregularities in walking patterns helps detect human locomotion abnormalities that can signal health changes. Traditional observation-based assessments have limitations due to subjective biases and capture only a single time point. Ambient and wearable sensor technologies allow continuous and objective locomotion monitoring but face challenges due to the need for specialized expertise and user compliance. This work proposes a seismograph-based algorithm for quantifying human gait, incorporating a step extraction algorithm derived from mathematical morphologies, with the goal of achieving the accuracy of clinical reference systems. To evaluate our method, we compared the gait parameters of 50 healthy participants, as recorded by seismographs, and those obtained from reference systems (a pressure-sensitive walkway and a camera system). Participants performed four walking tests, including traversing a walkway and completing the timed up-and-go (TUG) test. In our findings, we observed linear relationships with strong positive correlations (R2 > 0.9) and tight 95% confidence intervals for all gait parameters (step time, cycle time, ambulation time, and cadence). We demonstrated that clinical gait parameters and TUG mobility test timings can be accurately derived from seismographic signals, with our method exhibiting no significant differences from established clinical reference systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.