Abstract

Virtual rehabilitation environments may afford greater patient personalization if they could harness the patient's affective state. Four states: anxiety, pain, engagement and tiredness (either physical or psychological), were hypothesized to be inferable from observable metrics of hand location and gripping strength-relevant for rehabilitation. Contributions are; (a) multiresolution classifier built from Semi-Naïve Bayesian classifiers, and (b) establishing predictive relations for the considered states from the motor proxies capitalizing on the proposed classifier with recognition levels sufficient for exploitation. 3D hand locations and gripping strength streams were recorded from 5 post-stroke patients whilst undergoing motor rehabilitation therapy administered through virtual rehabilitation along 10 sessions over 4 weeks. Features from the streams characterized the motor dynamics, while spontaneous manifestations of the states were labelled from concomitant videos by experts for supervised classification. The new classifier was compared against baseline support vector machine (SVM) and random forest (RF) with all three exhibiting comparable performances. Inference of the aforementioned states departing from chosen motor surrogates appears feasible, expediting increased personalization of virtual motor neurorehabilitation therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call