Abstract
Respiratory pattern is a representation of human breathing activity, which can reflect people’s physical and psychological condition. Capturing the unexpected abnormal respiratory pattern unobtrusively of the patient or the potential patient has great significance. In the current work, we attempt to capitalize on depth camera and deep learning architecture to achieve the accurate and unobtrusive measurement of abnormal respiratory patterns, and the whole system can classify multiple people’s respiratory patterns in a real-time manner. The challenges in this task are threefold: 1) the real-time online system means that the Region of Interest (ROI) needs to be located and tracked automatically; 2) the amount of real-world data is not enough for training to obtain the robust deep neural network; and 3) the intraclass variation is large and the outer class variation is small. Consequently, human joints tracking is applied to determine the location of subjects shoulder and chest. Based on the characteristics of actual respiratory signals, a novel and efficient respiratory simulation model (RSM) is proposed to generate abundant and high-quality training data. Finally, we apply a gated recurrent unit (GRU) neural network with bidirectional and attentional mechanisms (BI-AT-GRU) to classify six clinically significant respiratory patterns (Eupnea, Tachypnea, Bradypnea, Biots, Cheyne–Stokes, and Central-Apnea). The performance of the obtained BI-AT-GRU is tested by the data that is actually measured by the depth camera. The experimental results demonstrate that the proposed model can classify six different respiratory patterns with the accuracy, precision, recall, and F1 of 94.5%, 94.4%, 95.1%, and 94.8%, respectively. In comparative experiments, the obtained BI-AT-GRU specific to respiratory pattern classification outperforms the existing state-of-the-art, viz ., BI-AT-LSTM, GRU, long short-term memory (LSTM), and BI-AT-GRU. Moreover, other experimental results indicate that the proposed online measuring system, deep neural network, and the modeling ideas have the potential to be extended to the large-scale applications, such as public places, sleep scenario, and office environment. The demo videos of the proposed system are available at: https://doi.org/10.6084/m9.figshare.11493666.v1 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.