Abstract

We show that deformations of a surjective morphism onto a Fano manifold of Picard number 1 are unobstructed and rigid modulo the automorphisms of the target, if the variety of minimal rational tangents of the Fano manifold is non-linear or finite. The condition on the variety of minimal rational tangents holds for practically all known examples of Fano manifolds of Picard number 1, except the projective space. When the variety of minimal rational tangents is non-linear, the proof is based on an earlier result of N. Mok and the author on the birationality of the tangent map. When the varieties of minimal rational tangents of the Fano manifold is finite, the key idea is to factorize the given surjective morphism, after some transformation, through a universal morphism associated to the minimal rational curves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.