Abstract

Hyperspectral imaging can be used in assessing the quality of foods by decomposing the image into constituents such as protein, starch, and water. Observed data can be considered a mixture of underlying characteristic spectra (endmembers), and estimating the constituents and their abundances requires efficient algorithms for spectral unmixing. We present a Bayesian spectral unmixing algorithm employing a volume constraint and propose an inference procedure based on Gibbs sampling. We evaluate the method on synthetic and real hyperspectral data of wheat kernels. Results show that our method perform as good or better than existing volume constrained methods. Further, our method gives credible intervals for the endmembers and abundances, which allows us to asses the confidence of the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.