Abstract
Spectral super-resolution has attracted research attention recently, which aims to generate hyperspectral images from RGB images. However, most of the existing spectral super-resolution algorithms work in a supervised manner, requiring pairwise data for training, which is difficult to obtain. In this paper, we propose an Unmixing Guided Unsupervised Network (UnGUN), which does not require pairwise imagery to achieve unsupervised spectral super-resolution. In addition, UnGUN utilizes arbitrary other hyperspectral imagery as the guidance image to guide the reconstruction of spectral information. The UnGUN mainly includes three branches: two unmixing branches and a reconstruction branch. Hyperspectral unmixing branch and RGB unmixing branch decompose the guidance and RGB images into corresponding endmembers and abundances respectively, from which the spectral and spatial priors are extracted. Meanwhile, the reconstruction branch integrates the above spectral-spatial priors to generate a coarse hyperspectral image and then refined it. Besides, we design a discriminator to ensure that the distribution of generated image is close to the guidance hyperspectral imagery, so that the reconstructed image follows the characteristics of a real hyperspectral image. The major contribution is that we develop an unsupervised framework based on spectral unmixing, which realizes spectral super-resolution without paired hyperspectral-RGB images. Experiments demonstrate the superiority of UnGUN when compared with some SOTA methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.