Abstract

Deep learning networks based on CNNs or transformers have made progress in spectral reconstruction (SR). However, many methods focus solely on feature extraction, overlooking the interpretability of network design. Additionally, models exclusively based on CNNs or transformers may lose other prior information, sacrificing reconstruction accuracy and robustness. In this paper, we propose a novel Unmixing-Guided Convolutional Transformer Network (UGCT) for interpretable SR. Specifically, transformer and ResBlock components are embedded in Paralleled-Residual Multi-Head Self-Attention (PMSA) to facilitate fine feature extraction guided by the excellent priors of local and non-local information from CNNs and transformers. Furthermore, the Spectral–Spatial Aggregation Module (S2AM) combines the advantages of geometric invariance and global receptive fields to enhance the reconstruction performance. Finally, we exploit a hyperspectral unmixing (HU) mechanism-driven framework at the end of the model, incorporating detailed features from the spectral library using LMM and employing precise endmember features to achieve a more refined interpretation of mixed pixels in HSI at sub-pixel scales. Experimental results demonstrate the superiority of our proposed UGCT, especially in the grss_d f c_2018 dataset, in which UGCT attains an RMSE of 0.0866, outperforming other comparative methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call