Abstract

Although farmlands are the most extensive terrestrial biomes, the abandonment of traditional agriculture in many parts of the world has brought opportunities and challenges for the restoration of such human-disturbed habitats. Seed arrival is a crucial necessary ecological process during plant recolonization that can be enhanced by the use of the so-called "perch plants". Little is known, however, about whether the seed arrival via frugivorous birds is affected by the spatial distribution of the perch plants in disturbed habitats. To evaluate several spatial aspects of "perching" effect, we used a spatially explicit approach in two disturbed plots within the Doñana National Park (SW Spain). Specifically, we chose as study system the pioneer Mediterranean dwarf palm Chamaerops humilis L., which is often used as a perch by a variety of frugivorous bird species. A total of 289 C. humilis individuals were sampled in search of bird feces (N = 2998) and dispersed seeds (N = 529). Recorded seeds belonged to six different woody species from five different families. Nine bird species from six different families were recorded using C. humilis as perches. GLMs analyses indicated that taller C. humilis males with higher numbers of spatially associated woody species received more dispersed seeds. We detected a random spatial structure of bird feces and dispersed seeds in one study plot, while a nonrandom spatial structure was found in the other one, where isolated C. humilis received a higher number of bird feces and dispersed seeds than expected under spatial null models. The difference in spatial patterns between both study plots could relate, among other factors, to their different state of development in the ecological succession. Most of dispersed seeds were concentrated in a small number of C. humilis individuals, usually male and large ones, that acted as "hotspots" of seed arrival. The fact that frugivorous birds in one study site visited most often isolated C. humilis questions the aggregated spatial structure of revegetation designs typically used in restoration projects. This study reveals novel spatial aspects of the "perching" effect which could be helpful in the restoration of human-disturbed habitats worldwide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call